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Hyperspectral Image (HSI)

HSIs contain wealthy spatial-spectral knowledge and have been
widely used in many applications, such as material identification,
mineral detection, and forest inspection.
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Why Study HSI Denoising?

HSIs in real applications always suffer from various noises,
such as Gaussian noise, sparse noise, and stripes.
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Conclusive Issue for HSI Denoising

Exploring accurate spatial-spectral prior knowledge of HSIs:

piecewise smoothness;
nonlocal self-similarity;
low rankness;
· · ·
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Tensor Basics (Fibers and Slices)

A fiber of a tensor X is a vector generated by fixing every index
but one.
A slice of a tensor X is a matrix generated by fixing every index

but two.

(a) (b)

Figure 1: Fibers and slices of three-way tensors.
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T-Product, T-SVD, and Tubal Rank

M-product: F = X · Y ⇔ F (i , j) =
∑n2

t=1 X (i , t)Y (t , j).

T-product: F = X ∗ Y ⇔ F(i , j , :) =
∑n2

t=1X (i , t , :) ? Y(t , j , :),
where ? denotes the circular convolution between two tubes.
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Figure 2: The t-SVD for three-way tensors.

The tubal rank of X is defined as the number of non-zero tubes
of S, i.e., rankt(X ) := #{i : S(i , i , :) 6= 0}.
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Motivation
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Figure 3: The t-SVD for an HSI.

When setting the band of an HSI to be the frontal slice of a
three-way tensor, the t-SVD characterizes its spatial correlations
via SVDs, while describes its spectral correlation by the embed-
ded circular convolution or DFT.

Yu-Bang Zheng (UESTC) Low-Fibered-Rank-Based HSI Denoising model



Introduction
The Proposed Model and Algorithm

Numerical Experiments

The Proposed Mode-k T-Product

Mode-k t-product (∗k ):

F = X ∗1 Y ⇔ F(:, j , s) =
∑n3

t=1
X (:, j , t) ? Y(:, t , s),

F = X ∗2 Y ⇔ F(i , :, s) =
∑n1

t=1
X (t , :, s) ? Y(i , :, t),

F = X ∗3 Y ⇔ F(i , j , :) =
∑n2

t=1
X (i , t , :) ? Y(t , j , :).
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The Proposed Mode-k T-SVD and Fibered Rank
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Figure 4: The mode-k t-SVD for three-way tensors (k=1,2,3).

The mode-k fibered rank: rankfk (X ) is defined as the number
of non-zero mode-k fibers of Sk .

The fibered rank: rankf(X ) =
(
rankf1(X ), rankf2(X ), rankf3(X )

)
.
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Low-Fibered-Rank Prior for An HSI
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Figure 5: The mode-k t-SVD for an HSI.

Table 1: The rank estimation of an HSI.

Data Size Tucker rank Tubal rank Fibered rank
Washington DC Mall 256× 256× 150 (107,110,6) 182 (8,8,182)
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Convex Relaxation: Three-Directional Tensor Nuclear Norm (3DTNN)

Mode-k TNN: ‖X‖TNNk is defined as the sum of singular values
of all the mode-k slices of X̄k , i.e.,

‖X‖TNNk :=
∑nk

i=1

∥∥(X̄k )
(i)
k

∥∥
∗,

where (X̄k )
(i)
k is the i-th mode-k slice of X̄k with X̄k = fft(X , [], k).

3DTNN: ‖X‖3DTNN is defined as

‖X‖3DTNN :=
∑3

k=1
αk‖X‖TNNk ,

where αk ≥ 0 (k = 1,2,3) and
∑3

k=1 αk = 1.
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3DTNN-Based HSI Denoising Model

Considering a target HSI X ∈ Rn1×n2×n3 , the proposed 3DTNN-
based HSI denoising model is formulated as

min
X ,N ,S

‖X‖3DTNN + λ1‖N‖2F + λ2‖S‖1,

s.t. Y = X +N + S,
(1)

where Y is the observed HSI, N is Gaussian noise, and S is
sparse noise.

The problem (1) can be rewritten as

min
X ,N ,S

∑3

k=1
αk‖X‖TNNk + λ1‖N‖2F + λ2‖S‖1,

s.t. Y = X +N + S,
(2)
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ADMM-Based Algorithm

We use the ADMM to solve (2). We introduce three auxiliary
tensors Zk (k = 1,2,3) and reformulate (2) as

min
X ,N ,S,Zk

∑3

k=1
αk‖Zk‖TNNk + λ1‖N‖2F + λ2‖S‖1,

s.t. Y − (X +N + S) = 0, X − Zk = 0, k = 1,2,3.
(3)

The augmented Lagrangian function of (3) is

Lµk ,β(Zk ,X ,N ,S,Mk ,P) =
∑3

k=1

{
αk
∥∥Zk

∥∥
TNNk

+〈X −Zk ,Mk 〉+ µk/2
∥∥X−Zk

∥∥2
F

}
+λ1‖N‖2F +λ2‖S‖1

+〈Y−(X+N+S),P〉+β/2
∥∥Y−(X+N+S)

∥∥2
F .
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ADMM-Based Algorithm

Algorithm 1 ADMM-based optimization algorithm for the 3DTNN-based
HSI denosing model.
Input: The noisy HSI Y , parameters α = (α1, α2, α3), µ = (µ1, µ2, µ3), λ1, λ2, β and ρ = 1.2.

Initialization: p = 0, X 0 = 0,N 0 = 0, S0 = 0, Z0
k = 0,M0

k = 0, and P0 = 0.

while not converged do

Update Zp+1
k = Dαk/µk

(
X p +Mp

k/µk , k
)
, k = 1, 2, 3.

Update X p+1 =
(∑3

k=1(µkZ
p+1
k −Mp

k ) + (βY − βN p − βSp + Pp)
)
/(
∑3

k=1 µk + β).

UpdateN p+1 =
(
βY − βX p+1 − βSp + Pp)/(2λ1 + β).

Update Sp+1 = shrink
(
Y − X p+1 −N p+1 + P

p
β
,
λ2
β

)
.

UpdateMp+1
k =Mp

k +µk (X p+1−Zp+1
k ), k = 1, 2, 3;Pp+1 = Pp +β

(
Y− (X p+1

k +N p+1
k +Sp+1

k )
)
.

Let µ = ρµ; β = ρβ; p = p + 1.

Check the convergence condition ‖X (p+1) − X (p)‖F/‖X (p)‖F < 10−4.

end while

Output: The restored HSI X .
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Computational Cost and Convergence

Computational cost:

O
(

n1n2n3
(

log(n1n2n3) +
3∑

i=1

min(ni ,ni+1)
))
, where n4 = n1.

Convergence:

guaranteed theoretically ⇐ convex optimization problem

Yu-Bang Zheng (UESTC) Low-Fibered-Rank-Based HSI Denoising model



Introduction
The Proposed Model and Algorithm

Numerical Experiments

Computational Cost and Convergence

Computational cost:

O
(

n1n2n3
(

log(n1n2n3) +
3∑

i=1

min(ni ,ni+1)
))
, where n4 = n1.

Convergence:

guaranteed theoretically ⇐ convex optimization problem

Yu-Bang Zheng (UESTC) Low-Fibered-Rank-Based HSI Denoising model



Introduction
The Proposed Model and Algorithm

Numerical Experiments

Outline

1 Introduction

2 The Proposed Model and Algorithm

3 Numerical Experiments

Yu-Bang Zheng (UESTC) Low-Fibered-Rank-Based HSI Denoising model



Introduction
The Proposed Model and Algorithm

Numerical Experiments

Compared Methods

Compared Methods:

BM4D+TRPCA [Maggioni et al., IEEE TIP 2012; Lu et al.,
CVPR 2016];

SSTV [Aggarwal and Majumdar, IEEE GRSL 2016];

LRMR [Zhang et al., IEEE TGRS 2016];

LRTR [Fan et al., IEEE JSTARS 2017].
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Case 1: different Gaussian noise, fixed impulse noise, and fixed stripe noise.

Table 2: The performance comparison of five competing methods with
respect to different Gaussian noise levels.

Case Case 1
Gaussian noise σ = 0.02 σ = 0.06 σ = 0.10
Impulse noise proportion υ = 0.2

Stripes added to 10 bands and proportion p = 10%.
Method PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM
Noise 11.373 0.1212 47.389 11.188 0.1137 48.025 10.839 0.1023 49.172

TRPCA+BM4D 38.798 0.9790 3.7193 33.657 0.9342 5.8150 30.991 0.8821 7.3463
SSTV 39.043 0.9754 4.3674 34.377 0.9326 6.6053 31.251 0.8734 8.8027
LRMR 35.196 0.9488 5.6839 33.653 0.9301 6.8313 31.516 0.8952 8.6890
LRTR 36.479 0.9629 5.1349 33.928 0.9331 6.2357 30.968 0.8923 8.4193

3DTNN 41.658 0.9920 1.8010 35.554 0.9655 3.9101 32.398 0.9317 5.5411
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Case 2: fixed Gaussian noise, different impulse noise, and fixed stripe noise.

Table 3: The performance comparison of five competing methods with
respect to different impulse noise levels.

Case Case 2
Gaussian noise σ = 0.02
Impulse noise υ = 0.1 υ = 0.3 υ = 0.4

Stripes added to 10 bands and proportion p = 10%.
Method PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM
Noise 14.357 0.2531 41.766 9.6182 0.0718 49.704 8.3756 0.0470 50.771

TRPCA+BM4D 39.900 0.9832 3.2894 37.273 0.9708 4.4344 33.336 0.9240 7.0538
SSTV 40.239 0.9804 4.0178 37.839 0.9682 4.8038 36.336 0.9562 5.4216
LRMR 38.597 0.9730 3.8940 32.704 0.9189 7.4550 30.588 0.8819 9.2499
LRTR 38.663 0.9741 3.7062 34.617 0.9428 6.2333 31.113 0.8717 9.2404

3DTNN 42.794 0.9937 1.6046 40.345 0.9897 2.0145 38.629 0.9856 2.3506
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Clean image Noisy image TRPCA+BM4D SSTV

LRMR LRTR 3DTNN

Figure 6: The three dimensional visualization of the denoising results
for Gaussian noise with σ = 0.02 and impulse noise with υ = 0.4.
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Clean image Noisy image TRPCA+BM4D SSTV

LRMR LRTR 3DTNN

Figure 7: The denoising results at band 131 for Gaussian noise with
σ = 0.02 and impulse noise with υ = 0.4.
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Thank you very much for listening.

Wechat

Homepage: https://yubangzheng.github.io
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