AAAI

Fully-Connected Tensor Network Decomposition and Its Application to Higher-Order Tensor Completion

Yu-Bang Zheng¹, Ting-Zhu Huang^{1,*}, Xi-Le Zhao^{1,*}, Qibin Zhao², Tai-Xiang Jiang³

Background: Tensor Decomposition

- >> Tensor decomposition aims to decompose a higher-order tensor to a set of low-dimensional factors and has powerful capability to capture the global correlations of tensors.
- ► CANDECOMP/PARAFAC (CP) decomposition:

$$\mathcal{X} = \sum_{r=1}^{R} \lambda_r \, \mathbf{g}_r^{(1)} \circ \mathbf{g}_r^{(2)} \circ \cdots \circ \mathbf{g}_r^{(N)}$$

➤ Tucker decomposition:

$$\mathcal{K} = \mathcal{G} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times_3 \cdots \times_N \mathbf{U}^{(N)}$$

➤ Tensor train (TT) decomposition:

$$\mathcal{X}(i_1, i_2, \cdots, i_N) = \sum_{r_1=1}^{R_1} \sum_{r_2=1}^{R_2} \cdots \sum_{r_{N-1}=1}^{R_{N-1}} I_2 - I_2 -$$

➤ Tensor ring (TR) decomposition:

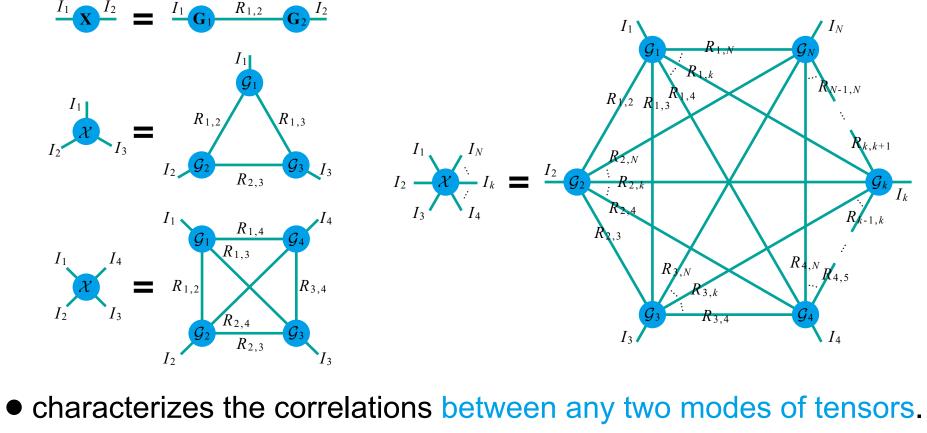
$$\mathcal{X}(i_1, i_2, \cdots, i_N) = \sum_{r_1=1}^{R_1} \sum_{r_2=1}^{R_2} \cdots \sum_{r_N=1}^{R_N} I_2 \prod_{I_3} I_2 \prod_{I_3} I_2 \prod_{I_3} I_2 \prod_{I_3} I_3 \prod_{I_3} I_2 \prod_{I_3} I_3 \prod_{I_3} I$$

Motivation

- ► CP decomposition faces difficulty in flexibly characterizing different correlations among different modes.
- Tucker decomposition only characterizes correlations among one mode and all the rest of modes, rather than between any two modes.
- ➡TT and TR decompositions only establish a connection (operation) between adjacent two factors, rather than any two factors.
- >TT and TR decompositions keep the invariance only when the tensor modes make a reverse permuting (TT and TR) or a circular shifting (only TR), rather than any permuting.

How to break through?

$$\mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1,2}=1}^{R_{1,2}} \sum_{r_{1,3}=1}^{R_{1,3}} \cdots \sum_{r_{1,N}=1}^{R_{1,N}} \sum_{r_{2,3}=1}^{R_{2,3}} \cdots \sum_{r_{2,N}=1}^{R_{2,N}} \cdots \sum_{r_{N-1,N}=1}^{R_{N-1,N}} \left\{ \mathcal{G}_{1}(i_{1}, r_{1,2}, r_{1,3}, \cdots, r_{1,N}) \\ \mathcal{G}_{2}(r_{1,2}, i_{2}, r_{2,3}, \cdots, r_{2,N}) \cdots \\ \mathcal{G}_{k}(r_{1,k}, r_{2,k}, \cdots, r_{k-1,k}, i_{k}, r_{k,k+1}, \cdots, r_{k,N}) \cdots \\ \mathcal{G}_{N}(r_{1,N}, r_{2,N}, \cdots, r_{N-1,N}, i_{N}) \right\}.$$



¹University of Electronic Science and Technology of China; ²Tensor Learning Team, RIKEN AIP; ³Southwestern University of Finance and Economics

Fully-Connected Tensor Network Decomposition

► The fully-connected tensor network (FCTN) decomposition aims to decompose an Nth-order tensor \mathcal{X} into a set of low-dimensional Nthorder factor tensors \mathcal{G}_k ($k = 1, 2, \cdots, N$).

• has transpositional invariance, i.e.,

 $\mathcal{X} = \text{FCTN}(\mathcal{G}_1, \mathcal{G}_2, \cdots, \mathcal{G}_N) \Leftrightarrow \vec{\mathcal{X}^n} = \text{FCTN}(\vec{\mathcal{G}_{n_1}^n}, \vec{\mathcal{G}_{n_2}^n}, \cdots, \vec{\mathcal{G}_{n_N}^n})$

• can bound the rank of all generalized tensor unfolding.

FCTN Decomposition-Based TC Model

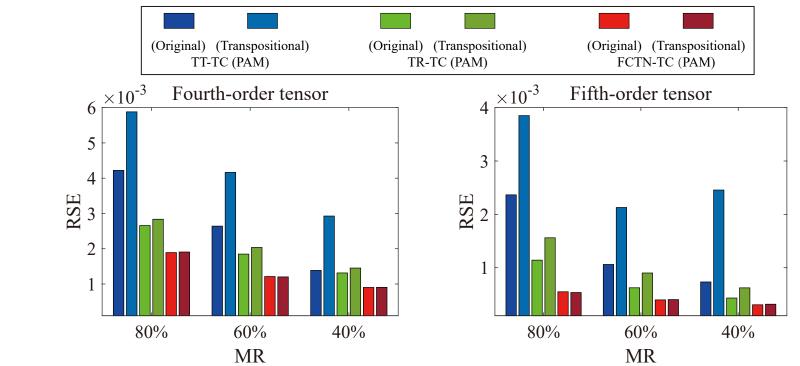
 \blacktriangleright Giving a partial observation \mathcal{F} of the underlying tensor \mathcal{X} , the FCTN decomposition-based tensor completion (FCTN-TC) model is

$$\underset{\mathcal{X},\mathcal{G}}{\operatorname{argmin}} \quad \frac{1}{2} \| \mathcal{X} - \operatorname{FCTN}(\mathcal{G}_1, \mathcal{G}_2, \cdots, \mathcal{G}_N) \|_F^2,$$

s.t.
$$\mathcal{P}_{\Omega}(\mathcal{X} - \mathcal{F}) = 0$$

RSE: relative error

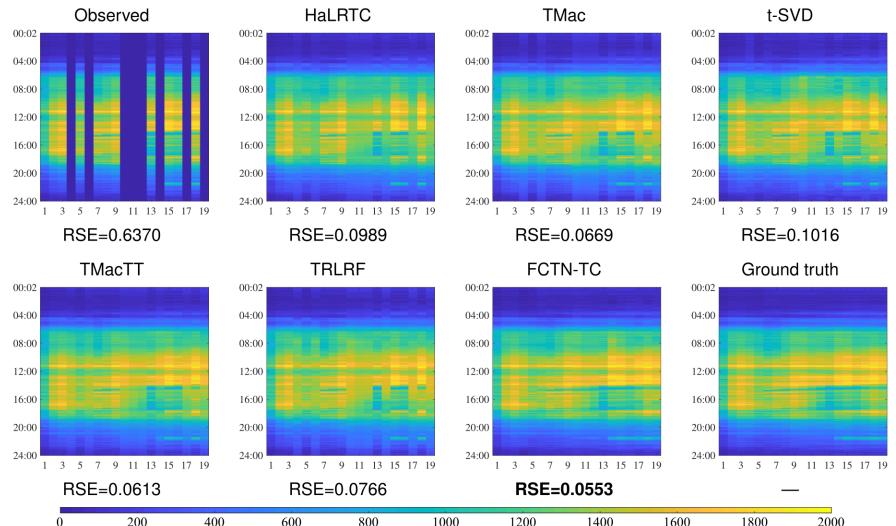
➤ Synthetic Data Experiments (RSE)



➤ Color Video Data Experiments (PSNR)

Dataset	MR	95%	90%	80%	Mean time (s)	Dataset	MR	95%	90%	80%	Mean time (s)
news	Observed	8.7149	8.9503	9.4607		containe	Observed	4.5969	4.8315	5.3421	
	HaLRTC	14.490	18.507	22.460	36.738		HaLRTC	18.617	21.556	25.191	34.528
	TMac	25.092	27.035	29.778	911.14		TMac	26.941	26.142	32.533	1224.4
	t-SVD	25.070	<u>28.130</u>	31.402	74.807		t-SVD	28.814	<u>34.912</u>	<u>39.722</u>	71.510
	TMacTT	24.699	27.492	<u>31.546</u>	465.75		TMacTT	28.139	31.282	37.088	450.70
	TRLRF	22.558	27.823	31.447	891.96		TRLRF	30.631	32.512	38.324	640.41
	FCTN-TC	26.392	29.523	33.048	473.50		FCTN-TC	30.805	37.326	42.974	412.72

➤ Traffic Data Experiments (RSE)



Experimental Results

MR: missing ratio