Fully-Connected Tensor Network Decomposition and Its Application to Higher-Order Tensor Completion

Yu-Bang Zheng1

Ting-Zhu Huang¹, Xi-Le Zhao¹, Qibin Zhao², Tai-Xiang Jiang³

¹University of Electronic Science and Technology of China, China ²Tensor Learning Team, RIKEN AIP, Japan ³Southwestern University of Finance and Economics, China

AAAI 2021

Outline

- Background and Motivation
- FCTN Decomposition
- 3 FCTN-TC Model and Solving Algorithm
- Numerical Experiments
- Conclusion

Outline

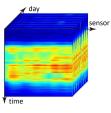
- Background and Motivation
- 2 FCTN Decomposition
- 3 FCTN-TC Model and Solving Algorithm
- 4 Numerical Experiments
- Conclusion

Higher-Order Tensors

Many real-world data are higher-order tensors: e.g., color video, hyperspectral image, and traffic data.

color video

hyperspectral image



traffic data

Tensor Completion

Missing Values Problems: recommender system design, image/video inpainting, and traffic data completion.

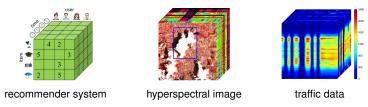
recommender system

hyperspectral image

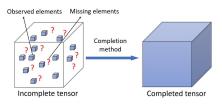
traffic data

Tensor Completion

Missing Values Problems: recommender system design, image/video inpainting, and traffic data completion.



Tensor Completion (TC): complete a tensor from its partial observation.



III-Posed Inverse Problem

III-posed inverse problem

III-Posed Inverse Problem

III-posed inverse problem

Prior/Intrinsic property

- Piecewise smoothness
- Nonlocal self-similarity
- Low-rankness

III-Posed Inverse Problem

Ill-posed inverse problem

Prior/Intrinsic property

- Piecewise smoothness
- Nonlocal self-similarity
- Low-rankness

Low-Rank Tensor Decomposition (Φ)

$$\min_{\mathcal{X},\mathcal{G}} \frac{1}{2} \| \mathcal{X} - \Phi(\mathcal{G}_1, \mathcal{G}_2, \cdots, \mathcal{G}_N) \|_F^2,$$
s.t. $\mathcal{P}_{\Omega}(\mathcal{X}) = \mathcal{P}_{\Omega}(\mathcal{F}).$

Minimizing Tensor Rank

$$\min_{\mathcal{X}} \ \text{Rank}(\mathcal{X}),$$
s.t. $\mathcal{P}_{\Omega}(\mathcal{X}) = \mathcal{P}_{\Omega}(\mathcal{F}).$

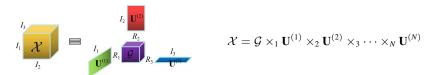
Here $\mathcal{F} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ is an incomplete observation of $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$, Ω is the index of the known elements, and $\mathcal{P}_{\Omega}(\mathcal{X})$ is a projection operator which projects the elements in Ω to themselves and all others to zeros.

Tensor Decomposition

- decomposes a higher-order tensor to a set of low-dimensional factors;
- has powerful capability to capture the global correlations of tensors.

Tensor Decomposition

- decomposes a higher-order tensor to a set of low-dimensional factors;
- has powerful capability to capture the global correlations of tensors.



Tucker decomposition

$$= \prod_{I_1}^{I_3} \underbrace{\mathcal{X}}_{I_1} = \prod_{g_1^{(1)}}^{g_2^{(1)}} \underbrace{g_2^{(2)}}_{I_1} \underbrace{g_2^{(2)}}_{I_2} \underbrace{g_2^{(2)}}_{I_2} \underbrace{g_2^{(2)}}_{I_2} \underbrace{g_2^{(2)}}_{I_2} \underbrace{g_2^{(2)}}_{I_1} \underbrace{g_2^{(2)}}_{I_2} \underbrace{g_2^{(2$$

CANDECOMP/PARAFAC (CP) decomposition

Limitations of Tucker Decomposition

- only characterizes correlations among one mode and all the rest of modes, rather than between any two modes;
- needs high storage cost.

Limitations of Tucker Decomposition

- only characterizes correlations among one mode and all the rest of modes, rather than between any two modes;
- needs high storage cost.

Limitations of CP Decomposition

- difficulty in flexibly characterizing different correlations among different modes;
- difficulty in finding the optimal solution.

Recently, the popular tensor train (TT) and tensor ring (TR) decompositions have emerged and shown great ability to deal with higher-order, especially beyond third-order tensors.

Recently, the popular tensor train (TT) and tensor ring (TR) decompositions have emerged and shown great ability to deal with higher-order, especially beyond thirdorder tensors.

$$I_{1}$$
 I_{2}
 I_{3}
 I_{4}
 I_{N}
 I_{N

$$\mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \cdots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \cdots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \cdots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \cdots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \cdots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \cdots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \cdots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \cdots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \cdots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \cdots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \cdots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \cdots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \cdots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \cdots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \cdots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{1}} \cdots \sum_{r_{N}=1}^{R_{N}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{1}} \cdots \sum_{r_{N}=1}^{R_{N}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{1}} \cdots \sum_{r_{N}=1}^{R_{N}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{1}} \cdots \sum_{r_{N}=1}^{R_{N}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{1}} \cdots \sum_{r_{N}=1}^{R_{N}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{1}} \cdots \sum_{r_{N}=1}^{R_{N}} \mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1}=1}^{R_{1}$$

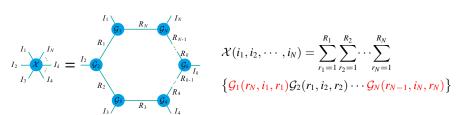
TT decomposition

Recently, the popular tensor train (TT) and tensor ring (TR) decompositions have emerged and shown great ability to deal with higher-order, especially beyond thirdorder tensors.

$$I_{1} \underbrace{I_{1}}_{I_{2}} \underbrace{I_{N}}_{I_{1}} \underbrace{I_{N}}_{I_{2}} = \underbrace{I_{1}}_{I_{1}} \underbrace{I_{2}}_{I_{2}} \underbrace{I_{N}}_{I_{2}} \underbrace{I_{N}}_{I_{N-1}} \underbrace{I_{N}}_{I_{N}}$$

$$\mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{1}} \dots \sum_{r_{N}=1}^{R_{N}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{1}} \dots \sum_{r_{N}=1}^{R_{N}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{1}} \dots \sum_{r_{N}=1}^{R_{N}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{1}} \dots \sum_{r_{N}=1}^{R_{N}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \dots \sum_{r_{N}=1}^{R_{N}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{N}} \dots \sum_$$

TT decomposition



TR decomposition

Motivations

Limitations of TT and TR Decomposition

A limited correlation characterization: only establish a connection (operation) between adjacent two factors, rather than any two factors;

Motivations

Limitations of TT and TR Decomposition

- A limited correlation characterization: only establish a connection (operation) between adjacent two factors, rather than any two factors;
- Without transpositional invariance: keep the invariance only when the tensor modes make a reverse permuting (TT and TR) or a circular shifting (only TR), rather than any permuting.

Examples:

```
\triangleright reverse permuting: [1,2,3,4] \rightarrow [4,3,2,1];
```

 \triangleright circular shifting: [1, 2, 3, 4] \rightarrow [2, 3, 4, 1], [3, 4, 1, 2], [4, 1, 2, 3].

Motivations

Limitations of TT and TR Decomposition

- A limited correlation characterization: only establish a connection (operation) between adjacent two factors, rather than any two factors;
- Without transpositional invariance: keep the invariance only when the tensor modes make a reverse permuting (TT and TR) or a circular shifting (only TR), rather than any permuting.

Examples:

```
\triangleright reverse permuting: [1,2,3,4] \rightarrow [4,3,2,1]; \triangleright circular shifting: [1,2,3,4] \rightarrow [2,3,4,1], [3,4,1,2], [4,1,2,3].
```

How to break through?

Outline

- Background and Motivation
- PCTN Decomposition
- 3 FCTN-TC Model and Solving Algorithm
- 4 Numerical Experiments
- Conclusion

Definition 1 (FCTN Decomposition)

The FCTN decomposition aims to decompose an Nth-order tensor \mathcal{X} into a set of **low-dimensional** Nth-order factor tensors \mathcal{G}_k ($k = 1, 2, \cdots, N$). The element-wise form of the FCTN decomposition can be expressed as

$$\mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1,2}=1}^{R_{1,2}} \sum_{r_{1,3}=1}^{R_{1,3}} \cdots \sum_{r_{1,N}=1}^{R_{1,N}} \sum_{r_{2,3}=1}^{R_{2,3}} \cdots \sum_{r_{2,N}=1}^{R_{2,N}} \cdots \sum_{r_{N-1,N}=1}^{R_{N-1,N}} \left\{ \mathcal{G}_{1}(i_{1}, r_{1,2}, r_{1,3}, \cdots, r_{1,N}) \right. \\ \left. \mathcal{G}_{2}(r_{1,2}, i_{2}, r_{2,3}, \cdots, r_{2,N}) \cdots \right. \\ \left. \mathcal{G}_{k}(r_{1,k}, r_{2,k}, \cdots, r_{k-1,k}, i_{k}, r_{k,k+1}, \cdots, r_{k,N}) \cdots \right. \\ \left. \mathcal{G}_{N}(r_{1,N}, r_{2,N}, \cdots, r_{N-1,N}, i_{N}) \right\}.$$

$$(1)$$

Note: Here $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ and $\mathcal{G}_k \in \mathbb{R}^{R_{1,k} \times R_{2,k} \times \cdots \times R_{k-1,k} \times I_k \times R_{k,k+1} \times \cdots \times R_{k,N}}$.

Definition 1 (FCTN Decomposition)

The FCTN decomposition aims to decompose an Nth-order tensor \mathcal{X} into a set of **low-dimensional** Nth-order factor tensors \mathcal{G}_k ($k = 1, 2, \cdots, N$). The element-wise form of the FCTN decomposition can be expressed as

$$\mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1,2}=1}^{R_{1,2}} \sum_{r_{1,3}=1}^{R_{1,3}} \cdots \sum_{r_{1,N}=1}^{R_{1,N}} \sum_{r_{2,3}=1}^{R_{2,3}} \cdots \sum_{r_{2,N}=1}^{R_{2,N}} \cdots \sum_{r_{N-1,N}=1}^{R_{N-1,N}} \left\{ \mathcal{G}_{1}(i_{1}, r_{1,2}, r_{1,3}, \cdots, r_{1,N}) \right. \\ \left. \mathcal{G}_{2}(r_{1,2}, i_{2}, r_{2,3}, \cdots, r_{2,N}) \cdots \right. \\ \left. \mathcal{G}_{k}(r_{1,k}, r_{2,k}, \cdots, r_{k-1,k}, i_{k}, r_{k,k+1}, \cdots, r_{k,N}) \cdots \right. \\ \left. \mathcal{G}_{N}(r_{1,N}, r_{2,N}, \cdots, r_{N-1,N}, i_{N}) \right\}.$$

$$(1)$$

Note: Here $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ and $\mathcal{G}_k \in \mathbb{R}^{R_{1,k} \times R_{2,k} \times \cdots \times R_{k-1,k} \times I_k \times R_{k,k+1} \times \cdots \times R_{k,N}}$.

FCTN-ranks: the vector (length: N(N-1)/2) collected by R_{k_1,k_2} (1 $\leq k_1 < k_2 \leq N$ and $k_1,k_2 \in \mathbb{N}^+$).

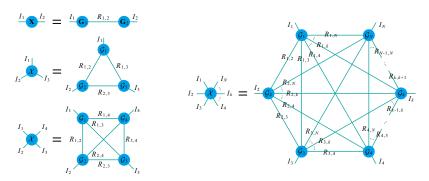


Figure 1: The Fully-Connected Tensor Network Decomposition.

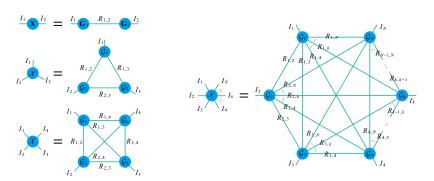


Figure 1: The Fully-Connected Tensor Network Decomposition.

 R_{k_1,k_2} : characterizes the intrinsic correlations between the k_1 th and k_2 th modes of \mathcal{X} .

FCTN Decomposition: characterizes the correlations between any two modes.

Matrices/Second-Order Tensors

$$\boldsymbol{X} = \boldsymbol{G}_1 \boldsymbol{G}_2 \Leftrightarrow \boldsymbol{X}^\mathsf{T} = \boldsymbol{G}_2^\mathsf{T} \boldsymbol{G}_1^\mathsf{T}$$

 \Rightarrow

Higher-Order Tensors

?

Matrices/Second-Order Tensors

$$\boldsymbol{X} = \boldsymbol{G}_1 \boldsymbol{G}_2 \Leftrightarrow \boldsymbol{X}^\mathsf{T} = \boldsymbol{G}_2^\mathsf{T} \boldsymbol{G}_1^\mathsf{T}$$

Higher-Order Tensors

? ? ?

Theorem 1 (Transpositional Invariance)

Supposing that an Nth-order tensor \mathcal{X} has the following FCTN decomposition: $\mathcal{X} = FCTN(\mathcal{G}_1, \mathcal{G}_2, \cdots, \mathcal{G}_N)$. Then, its vector \mathbf{n} -based generalized tensor transposition $\vec{\mathcal{X}}^\mathbf{n}$ can be expressed as $\vec{\mathcal{X}}^\mathbf{n} = FCTN(\vec{\mathcal{G}}^\mathbf{n}_{n_1}, \vec{\mathcal{G}}^\mathbf{n}_{n_2}, \cdots, \vec{\mathcal{G}}^\mathbf{n}_{n_N})$, where $\mathbf{n} = (n_1, n_2, \cdots, n_N)$ is a reordering of the vector $(1, 2, \cdots, N)$.

Note: $\vec{\mathcal{X}}^{\mathbf{n}} \in \mathbb{R}^{l_{n_1} \times I_{n_2} \times \cdots \times I_{n_N}}$ is generated by rearranging the modes of \mathcal{X} in the order specified by the vector \mathbf{n} .

FCTN Decomposition: has transpositional invariance.

Theorem 2 (The FCTN Rank and the Unfolding Matrix Rank)

Supposing that an Nth-order tensor $\mathcal X$ can be represented by Equation (1), the following inequality holds:

$$\operatorname{Rank}(\mathbf{X}_{[n_{1:d};n_{d+1:N}]}) \leq \prod_{i=1}^{d} \prod_{j=d+1}^{N} R_{n_i,n_j},$$

where $R_{n_i,n_j} = R_{n_j,n_i}$ if $n_i > n_j$ and (n_1,n_2,\cdots,n_N) is a reordering of the vector $(1,2,\cdots,N)$.

Note: $\mathbf{X}_{[n_{1:d};n_{d+1:N}]} = \text{reshape}(\vec{\mathcal{X}}^\mathbf{n},\prod_{i=1}^d I_{n_i},\prod_{i=d+1}^N I_{n_i}).$

Comparison:

 \triangleright TT-rank: Rank $(\mathbf{X}_{[1:d;d+1:N]}) = R_d;$

 \triangleright TR-rank: Rank $(\mathbf{X}_{[1:d;d+1:N]}) \le R_d R_N;$

 \triangleright FCTN-rank: Rank $(\mathbf{X}_{[1:d;d+1:N]}) \le \prod_{i=1}^d \prod_{j=d+1}^N R_{i,j}$.

Theorem 2 (The FCTN Rank and the Unfolding Matrix Rank)

Supposing that an Nth-order tensor \mathcal{X} can be represented by Equation (1), the following inequality holds:

$$\operatorname{Rank}(\mathbf{X}_{[n_{1:d};n_{d+1:N}]}) \leq \prod_{i=1}^{d} \prod_{j=d+1}^{N} R_{n_i,n_j},$$

where $R_{n_i,n_j} = R_{n_j,n_i}$ if $n_i > n_j$ and (n_1,n_2,\cdots,n_N) is a reordering of the vector $(1,2,\cdots,N)$.

Note: $\mathbf{X}_{[n_{1:d};n_{d+1:N}]} = \text{reshape} (\vec{\mathcal{X}}^\mathbf{n}, \prod_{i=1}^d I_{n_i}, \prod_{i=d+1}^N I_{n_i}).$

Comparison:

- \triangleright TT-rank: Rank $(\mathbf{X}_{[1:d:d+1:N]}) = R_d;$
- \triangleright TR-rank: Rank $(\mathbf{X}_{[1:d;d+1:N]}) \le R_d R_N$;
- \triangleright FCTN-rank: Rank $(\mathbf{X}_{[1:d;d+1:N]}) \le \prod_{i=1}^d \prod_{j=d+1}^N R_{i,j}$.
 - the FCTN-rank can bound the rank of all generalized tensor unfolding;
 - can capture more informations than TT-rank and TR-rank;

A Discussion of the Storage Cost

CP Decomposition $\mathcal{O}(NR_1I)$

Tucker Decomposition $\mathcal{O}(NIR_3 + R_3^N)$

TT/TR Decomposition $\mathcal{O}(NR_2^2I)$

FCTN Decomposition $\mathcal{O}(NR_4^{N-1}I)$

A Discussion of the Storage Cost

$$\begin{array}{c} \text{CP Decomposition} \\ \mathcal{O}(NR_1I) \end{array} \qquad \begin{array}{c} \text{TT/TR Decomposition} \\ \mathcal{O}(NR_2^2I) \end{array}$$

$$\begin{array}{c} \text{Tucker Decomposition} \\ \mathcal{O}(NIR_3+R_3^N) \end{array} \qquad \begin{array}{c} \text{FCTN Decomposition} \\ \mathcal{O}(NR_4^{N-1}I) \end{array}$$

The storage cost of the FCTN decomposition seems to theoretical high. But when we express real-world data, the required FCTN-rank **is usually less** than CP, TT, TR, and Tucker-ranks.

FCTN Composition

Definition 2 (FCTN Composition)

We call the process of generating \mathcal{X} by its FCTN factors \mathcal{G}_k $(k=1,2,\cdots N)$ as the FCTN composition, which is also denoted as FCTN $(\{\mathcal{G}_k\}_{k=1}^N)$. If one of the factors \mathcal{G}_t $(t \in \{1,2,\cdots,N\})$ does not participate in the composition, we denote it as $FCTN(\{\mathcal{G}_k\}_{k=1}^N,/\mathcal{G}_t)$

Theorem 3

Supposing that $\mathcal{X} = \text{FCTN}(\{\mathcal{G}_k\}_{k=1}^N)$ and $\mathcal{M}_t = \text{FCTN}(\{\mathcal{G}_k\}_{k=1}^N,/\mathcal{G}_t)$, we obtain that

$$\mathbf{X}_{(t)} = (\mathbf{G}_t)_{(t)} (\mathbf{M}_t)_{[m_{1:N-1};n_{1:N-1}]},$$

where

$$m_i = \begin{cases} 2i, & \text{if } i < t, \\ 2i - 1, & \text{if } i \ge t, \end{cases}$$
 and $n_i = \begin{cases} 2i - 1, & \text{if } i < t, \\ 2i, & \text{if } i \ge t. \end{cases}$

Outline

- Background and Motivation
- PCTN Decomposition
- 3 FCTN-TC Model and Solving Algorithm
- 4 Numerical Experiments
- Conclusion

FCTN-TC Model

$$\mathcal{F} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$$

Relationship

$$\mathcal{P}_{\Omega}(\mathcal{X}) = \mathcal{P}_{\Omega}(\mathcal{F})$$

Underlying Tensor

$$\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$$

FCTN-TC Model

$$\begin{array}{c|c} \text{Incomplete Observation} \\ \hline \mathcal{F} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N} \end{array} \Leftarrow \begin{array}{c} \text{Relationship} \\ \hline \mathcal{P}_{\Omega}(\mathcal{X}) = \mathcal{P}_{\Omega}(\mathcal{F}) \end{array} \Rightarrow \begin{array}{c} \text{Underlying Tensor} \\ \mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N} \end{array}$$

FCTN Decomposition-Based TC (FCTN-TC) Model

$$\min_{\mathcal{X},\mathcal{G}} \frac{1}{2} \| \mathcal{X} - \text{FCTN}(\mathcal{G}_1, \mathcal{G}_2, \cdots, \mathcal{G}_N) \|_F^2 + \iota_{\mathbb{S}}(\mathcal{X}), \tag{2}$$

where $\mathcal{G} = (\mathcal{G}_1, \mathcal{G}_2, \cdots, \mathcal{G}_N)$,

$$\iota_{\mathbb{S}}(\mathcal{X}) := \begin{cases} 0, \text{ if } \mathcal{X} \in \mathbb{S}, \\ \infty, \text{ otherwise}, \end{cases} \text{ with } \mathbb{S} \! := \{ \mathcal{X} \! : \mathcal{P}_{\Omega}(\mathcal{X} - \mathcal{F}) \! = \! 0 \},$$

 Ω is the index of the known elements, and $\mathcal{P}_{\Omega}(\mathcal{X})$ is a projection operator which projects the elements in Ω to themselves and all others to zeros.

PAM-Based Algorithm

Proximal Alternating Minimization (PAM)

$$\begin{cases}
\mathcal{G}_{k}^{(s+1)} = \underset{\mathcal{G}_{k}}{\operatorname{argmin}} \left\{ f(\mathcal{G}_{1:k-1}^{(s+1)}, \mathcal{G}_{k}, \mathcal{G}_{k+1:N}^{(s)}, \mathcal{X}^{(s)}) + \frac{\rho}{2} \|\mathcal{G}_{k} - \mathcal{G}_{k}^{(s)}\|_{F}^{2} \right\}, \ k = 1, 2, \dots, N, \\
\mathcal{X}^{(s+1)} = \underset{\mathcal{X}}{\operatorname{argmin}} \left\{ f(\mathcal{G}^{(s+1)}, \mathcal{X}) + \frac{\rho}{2} \|\mathcal{X} - \mathcal{X}^{(s)}\|_{F}^{2} \right\},
\end{cases} \tag{3}$$

where $f(\mathcal{G}, \mathcal{X})$ is the objective function of (2) and $\rho > 0$ is a proximal parameter.

PAM-Based Algorithm

Proximal Alternating Minimization (PAM)

$$\begin{cases}
\mathcal{G}_{k}^{(s+1)} = \underset{\mathcal{G}_{k}}{\operatorname{argmin}} \left\{ f(\mathcal{G}_{1:k-1}^{(s+1)}, \mathcal{G}_{k}, \mathcal{G}_{k+1:N}^{(s)}, \mathcal{X}^{(s)}) + \frac{\rho}{2} \|\mathcal{G}_{k} - \mathcal{G}_{k}^{(s)}\|_{F}^{2} \right\}, \ k = 1, 2, \dots, N, \\
\mathcal{X}^{(s+1)} = \underset{\mathcal{X}}{\operatorname{argmin}} \left\{ f(\mathcal{G}^{(s+1)}, \mathcal{X}) + \frac{\rho}{2} \|\mathcal{X} - \mathcal{X}^{(s)}\|_{F}^{2} \right\},
\end{cases} \tag{3}$$

where $f(\mathcal{G}, \mathcal{X})$ is the objective function of (2) and $\rho > 0$ is a proximal parameter.

$$G_k$$
-Subproblems $(k=1,2,\cdots,N)$

$$(\mathbf{G}_{k}^{(s+1)})_{(k)} = \left[\mathbf{X}_{(k)}^{(s)} (\mathbf{M}_{k}^{(s)})_{[n_{1:N-1};m_{1:N-1}]} + \rho(\mathbf{G}_{k}^{(s)})_{(k)} \right] \left[(\mathbf{M}_{k}^{(s)})_{[m_{1:N-1};n_{1:N-1}]} (\mathbf{M}_{k}^{(s)})_{[n_{1:N-1};m_{1:N-1}]} + \rho \mathbf{I} \right]^{-1},$$

$$\mathbf{G}_{k}^{(s+1)} = \operatorname{GenFold} \left((\mathbf{G}_{k}^{(s+1)})_{(k)}, k; 1, \cdots, k-1, k+1, \cdots, N \right),$$

$$(4)$$

where $\mathcal{M}_k^{(s)} = \text{FCTN}(\mathcal{G}_{1:k-1}^{(s+1)}, \mathcal{G}_k, \mathcal{G}_{k+1:N}^{(s)}, /\mathcal{G}_k)$, and vectors \mathbf{m} and \mathbf{n} have the same setting as that in Theorem 3.

\mathcal{X} -Subproblem

$$\mathcal{X}^{(s+1)} = \mathcal{P}_{\Omega^c} \left(\frac{\text{FCTN}(\{\mathcal{G}_k^{(s+1)}\}_{k=1}^N) + \rho \mathcal{X}^{(s)}}{1+\rho} \right) + \mathcal{P}_{\Omega}(\mathcal{F}). \tag{5}$$

PAM-Based Algorithm

Algorithm 1 PAM-Based Solver for the FCTN-TC Model.

```
Input: \mathcal{F} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}, \Omega, the maximal FCTN-rank R^{\max}, and \rho = 0.1.

Initialization: s = 0, s^{\max} = 1000, \mathcal{X}^{(0)} = \mathcal{F}, the initial FCTN-rank R = \max\{\operatorname{ones}(N(N-1)/2,1), R^{\max}-5\}, and \mathcal{G}_k^{(0)} = \operatorname{rand}(R_{1,k},R_{2,k},\cdots,R_{k-1,k},I_k,R_{k,k+1},\cdots,R_{k,N}), where k=1,2,\cdots,N.

while not converged and s < s^{\max} do

Update \mathcal{G}_k^{(s+1)} via (4).

Update \mathcal{X}^{(s+1)} via (5).

Let R = \min\{R+1,R^{\max}\} and expand \mathcal{G}_k^{(s+1)} if \|\mathcal{X}^{(s+1)} - \mathcal{X}^{(s)}\|_F/\|\mathcal{X}^{(s)}\|_F < 10^{-2}.

Check the convergence condition: \|\mathcal{X}^{(s+1)} - \mathcal{X}^{(s)}\|_F/\|\mathcal{X}^{(s)}\|_F < 10^{-5}.

Let s = s+1.

end while

Output: The reconstructed tensor \mathcal{X}.
```

Theorem 4 (Convergence)

The sequence $\{\mathcal{G}^{(s)}, \mathcal{X}^{(s)}\}_{s \in \mathbb{N}}$ obtained by the Algorithm 1 globally converges to a critical point of (2).

Outline

- Background and Motivation
- PCTN Decomposition
- 3 FCTN-TC Model and Solving Algorithm
- Numerical Experiments
- Conclusion

Synthetic Data Experiments

- Compared Methods: TT-TC (PAM), TR-TC (PAM), and FCTN-TC (PAM);
- Quantitative Metric: the relative error (RSE) between the reconstructed tensor and the ground truth.

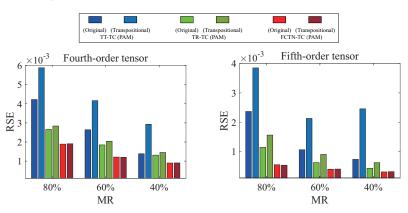


Figure 2: Reconstructed results on the synthetic dataset.

Real Data Experiments

Compared Methods:

- HaLRTC [Liu et al. 2013; IEEE TPAMI];
- TMac [Xu et al. 2015; IPI];
- t-SVD [Zhang and Aeron 2017; IEEE TSP];
- TMacTT [Bengua et al. 2017; IEEE TIP];
- TRLRF [Yuan et al. 2019; AAAI].

Quantitative Metric:

- PSNR;
- RSE.

Color Video Data

Table 1: The PSNR values and the running times of all utilized methods on the color video data.

Dataset	MR	95%	90%	80%	Mean time (s)	Dataset	MR	95%	90%	80%	Mean time (s)
news	Observed	8.7149	8.9503	9.4607	_	containe	Observed	4.5969	4.8315	5.3421	
	HaLRTC	14.490	18.507	22.460	36.738		HaLRTC	18.617	21.556	25.191	34.528
	TMac	25.092	27.035	29.778	911.14		TMac	26.941	26.142	32.533	1224.4
	t-SVD	25.070	28.130	31.402	74.807		t-SVD	28.814	34.912	39.722	71.510
	TMacTT	24.699	27.492	31.546	465.75		TMacTT	28.139	31.282	37.088	450.70
	TRLRF	22.558	27.823	31.447	891.96		TRLRF	30.631	32.512	38.324	640.41
	FCTN-TC	26.392	29.523	33.048	473.50		FCTN-TC	30.805	37.326	42.974	412.72
Dataset	MR	95%	90%	80%	Mean	Dataset	MR 95	95%	000/	80%	Mean
					time (s)		IVIT	95%	90%		time (s)
elephants	Observed	3.8499	4.0847	4.5946	_	bunny	Observed	6.4291	6.6638	7.1736	
	HaLRTC	16.651	20.334	24.813	38.541		HaLRTC	14.561	19.128	23.396	32.882
	TMac	26.753	28.648	31.010	500.70		TMac	25.464	28.169	30.525	779.78
	t-SVD	21.810	27.252	30.975	63.994		t-SVD	21.552	26.094	30.344	66.294
	TMacTT	25.918	28.880	32.232	204.64		TMacTT	26.252	29.512	33.096	264.15
	TRLRF	27.120	28.361	32.133	592.13		TRLRF	27.749	29.034	33.224	652.03
	FCTN-TC	27.780	30.835	34.391	455.71		FCTN-TC	28.337	32.230	36.135	468.25

The data is available at http://trace.eas.asu.edu/yuv/.

Color Video Data

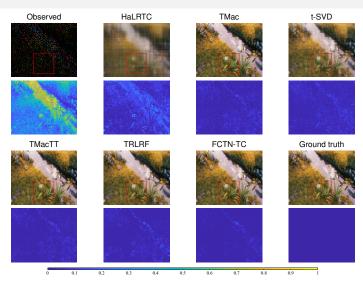


Figure 3: Reconstructed results on the 35th frame of the CV bunny.

Traffic Data

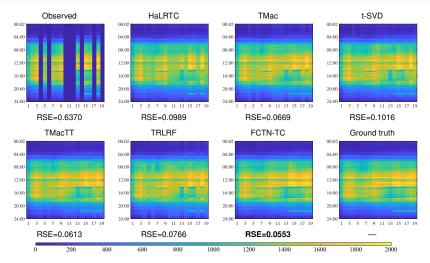


Figure 4: Reconstructed results on the traffic flow dataset with MR=40%. The first and the second rows are the results on the 2nd day and the corresponding residual results, respectively. The data is available at http://gtl.inrialpes.fr/.

Conclusion

Contributions

- Propose an FCTN decomposition, which breaks through the limitations of TT and TR decompositions;
- Employ the FCTN decomposition to the TC problem and develop an efficient PAMbased algorithm to solve it;
- 3 Theoretically demonstrate the convergence of the developed algorithm.

Conclusion

Contributions

- Propose an FCTN decomposition, which breaks through the limitations of TT and TR decompositions;
- Employ the FCTN decomposition to the TC problem and develop an efficient PAMbased algorithm to solve it;
- Theoretically demonstrate the convergence of the developed algorithm.

Challenges and Future Directions

- Difficulty in finding the optimal FCTN-ranks

 Exploit prior knowledge of factors;
- Storage cost seems to theoretical high ← Introduce probability graphical model.

Thank you very much for listening!

Wechat

Homepage: https://yubangzheng.github.io