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Background and Motivation

Higher-Order Tensors

Many real-world data are higher-order tensors: e.g., color video, hyperspectral image,
and traffic data.

color video hyperspectral image traffic data
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Background and Motivation

Tensor Completion

Missing Values Problems: recommender system design, image/video inpainting, and
traffic data completion.

user

recommender system hyperspectral image traffic data
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Background and Motivation

Tensor Completion

Missing Values Problems: recommender system design, image/video inpainting, and

traffic data completion.

user

s2as

recommender system hyperspectral image traffic data

Tensor Completion (TC): complete a tensor from its partial observation.
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Background and Motivation

llI-Posed Inverse Problem

lll-posed inverse problem J
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Background and Motivation

llI-Posed Inverse Problem

lll-posed inverse problem

)

)

Prior/Intrinsic property
@ Piecewise smoothness

@ Nonlocal self-similarity
@ Low-rankness

Yu-Bang Zheng (UESTC) FCTN Decomposition

6/29



Background and Motivation

llI-Posed Inverse Problem

Low-Rank Tensor Decomposition (®)
lll-posed inverse problem

1 2
Sl -
J min 2H (G1,G2, -+, GVl

T s.t. Pa(X) = Pa(F).
Prior/Intrinsic property =

@ Piecewise smoothness Minimizing Tensor Rank
@ Nonlocal self-similarity

min Rank(X),
@ Low-rankness x

s.t. Pa(X) = Pa(F).

Here F € R *2%xI¥ js an incomplete observation of X € R *2* >V () is the index

of the known elements, and Pq (X)) is a projection operator which projects the elements
in 2 to themselves and all others to zeros.
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Background and Motivation

Tensor Decomposition

Tensor Decomposition

@ decomposes a higher-order tensor to a set of low-dimensional factors;
@ has powerful capability to capture the global correlations of tensors.
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Background and Motivation

Tensor Decomposition

Tensor Decomposition

@ decomposes a higher-order tensor to a set of low-dimensional factors;
@ has powerful capability to capture the global correlations of tensors.
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Tucker decomposition

g g
B L/ 1, 13/ L L/ 1, R
T dheedh g XZE:)\rgfl) Og£2) 0"'0gEN)

i ' E[ g” 1 g5 A F
1 g® 1 | g 1| g¥ r=1
CANDECOMP/PARAFAC (CP) decomposition
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Background and Motivation

Tensor Decomposition

Limitations of Tucker Decomposition

@ only characterizes correlations among one mode and all the rest of modes,
rather than between any two modes;

@ needs high storage cost.
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Background and Motivation

Tensor Decomposition

Limitations of Tucker Decomposition

@ only characterizes correlations among one mode and all the rest of modes,
rather than between any two modes;

@ needs high storage cost.

Limitations of CP Decomposition

@ difficulty in flexibly characterizing different correlations among different modes;
@ difficulty in finding the optimal solution.
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Background and Motivation

Tensor Decompositions

Recently, the popular tensor train (TT) and tensor ring (TR) decompositions have
emerged and shown great ability to deal with higher-order, especially beyond third-
order tensors.
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Background and Motivation

Tensor Decompositions

Recently, the popular tensor train (TT) and tensor ring (TR) decompositions have
emerged and shown great ability to deal with higher-order, especially beyond third-

order tensors.
Rl Ry Ry

I Iv I L In Xl iy yin) = E E E
—_ 6 ‘ 6 ri=1rn=1 v—1=1
h2 l = R R>  Rwa
I3 Iy

{Gi(ir,7)Ga(r1,i2,72) - Gy (rv—1,in) }
TT decomposition
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Background and Motivation

Tensor Decompositions

Recently, the popular tensor train (TT) and tensor ring (TR) decompositions have
emerged and shown great ability to deal with higher-order, especially beyond third-
order tensors.

Rl Ry Ry
I Iy I L Iy X(il,iz,vv-,iN):ZZ-u Z
I %I,{ = ‘T}‘Tz ﬂ ri=lr=1 v—1=1
Is L {Gl(il,rl)gz(h,iz,rz)"'GN(":V—I:[N)}
TT decomposition
R Ry Ry

X(ir, iz, - - - ’iN):ZZ”'Z

ri=1rn=1 ry=1

{gl (rny i, 1) Ga(riy iy ra) - Gy (rv—1, in, FN)}

TR decomposition
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Background and Motivation

Motivations

Limitations of TT and TR Decomposition

@ A limited correlation characterization: only establish a connection (opera-
tion) between adjacent two factors, rather than any two factors;
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Background and Motivation

Motivations

Limitations of TT and TR Decomposition

@ A limited correlation characterization: only establish a connection (opera-
tion) between adjacent two factors, rather than any two factors;

@ Without transpositional invariance: keep the invariance only when the ten-
sor modes make a reverse permuting (TT and TR) or a circular shifting (only
TR), rather than any permuting.

Examples:
> reverse permuting: [1,2,3,4] — [4,3,2,1];
B> circular shifting: [1,2,3,4] — [2,3,4,1],[3,4,1,2],[4,1,2,3].
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Background and Motivation

Motivations

Limitations of TT and TR Decomposition

@ A limited correlation characterization: only establish a connection (opera-
tion) between adjacent two factors, rather than any two factors;

@ Without transpositional invariance: keep the invariance only when the ten-
sor modes make a reverse permuting (TT and TR) or a circular shifting (only
TR), rather than any permuting.

Examples:
> reverse permuting: [1,2,3,4] — [4,3,2,1];
B> circular shifting: [1,2,3,4] — [2,3,4,1],[3,4,1,2],[4,1,2,3].

How to break through?
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FCTN Decomposition

FCTN Decomposition

Definition 1 (FCTN Decomposition)

The FCTN decomposition aims to decompose an Nth-order tensor X' into a set of low-
dimensional Nth-order factor tensors G; (k = 1,2,--- ,N).The element-wise form of
the FCTN decomposition can be expressed as

Ri2 Rij3 Rin Ra3 Ry N Ry—1,N
X(i17i27"'7iN):Z ZZ ZZ Z
na=lrnsz=l  rny=lnsz=1l ny=1 - y=1
{gl(il,rl,z,rl,3,'--,Vl,N) (1)
Ga(ri2,i2, 123, FaN) -+
Gi(Fiky T2k, * 5 Pk 1k Ty Tk 1" %5 TN ) *

GN(FINs 2Ny o IN—1L N, iN)}-

Note: Here X ¢ Rllxlzx---xl,v and gk c RRl,kXRZ,kX'”XRk—l,kXIk ka,kaMka,N_
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FCTN Decomposition

FCTN Decomposition

Definition 1 (FCTN Decomposition)

The FCTN decomposition aims to decompose an Nth-order tensor X' into a set of low-
dimensional Nth-order factor tensors G; (k = 1,2,--- ,N).The element-wise form of
the FCTN decomposition can be expressed as

Ri2 Rij3 Rin Ra3 Ry N Ry—1,N
X(il,iz,---,iN):E E E E § E
rp=lrns=1 rny=lns=l ny=1  rnw_jy=]
{Gi(ir, 12,15, 11N) (1)

g2(r1,27i27r2,37' : .,rzﬁN). o

Gr(F1 e, T2k s FheT ks Tk T 15"+ %5 ThN )"

Gn(rin, 12N, - IN—IN, iN)}-

Note: Here X ¢ Rllxlzx---xl,v and gk c RRI.kXRz,kX'”XRk—l,kXIk XRkyk+l><“‘><RkyN-

FCTN-ranks: the vector (length: N(N — 1)/2) collected by Ry, i, (1 < ki < k» <
N and ki, k, € NT).
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FCTN Decomposition

FCTN Decomposition

I x L _ I Ri: I

I
Iy Lo

Jek+1

Figure 1: The Fully-Connected Tensor Network Decomposition.
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FCTN Decomposition

FCTN Decomposition

I 'Iz _ 1 Ris I

I
Iy Lo

Jek+1

Figure 1: The Fully-Connected Tensor Network Decomposition.

Ry, k, - Characterizes the intrinsic correlations between the k;th and k>th modes of X.

‘ FCTN Decomposition: characterizes the correlations between any two modes.
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FCTN Decomposition

FCTN Decomposition

X =GG, <X =GIG] ?2 72 9

Matrices/Second-Order Tensors J N Higher-Order Tensors J
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FCTN Decomposition

FCTN Decomposition

Matrices/Second-Order Tensors N Higher-Order Tensors
X=GG & X =GIG] J ? 0?7 J

Theorem 1 (Transpositional Invariance)

Supposing that an Nth-order tensor X' has the following FCTN decomposition: X =

FCTN(G1,G,- -+ ,Gn). Then, its vector n-based generalized tensor transposition X™
can be expressed as X" = FCTN(G),,Gn,, - ,Gu), Where n = (ni,na,---,ny) is a
reordering of the vector (1,2,--- ,N).

Note: Xn € R *In XXl is generated by rearranging the modes of X' in the order specified by
the vector n.

‘ FCTN Decomposition: has transpositional invariance.
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FCTN Decomposition

Theorem 2 (The FCTN Rank and the Unfolding Matrix Rank)

Supposing that an Nth-order tensor X can be represented by Equation (1), the following
inequality holds:

N
Rank(X["l;d%"dJrl:N]) = H H Ry njs

d
=1 j=d+1

i

where Ry, n; =Ry, 0, ifni>n; and (n1,n2,- - -, ny) is a reordering of the vector (1,2, --,N).

y
Note: X[, g4 1.4] = Teshape (.f“, Hle In;, Hf’:d+1 In).
Comparison:

> TT-rank: Rank(x[lzd;d+1:N]) = Ry,

> TR-rank: Rank (X[1.4,011:5)) < RaRw;

> FCTN-rank: Rank (X{1.;+1:87) < [Ty [T gy Riy-
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FCTN Decomposition

Theorem 2 (The FCTN Rank and the Unfolding Matrix Rank)

Supposing that an Nth-order tensor X can be represented by Equation (1), the following
inequality holds:

N
Rank(X['ll;d%"dJrl:N]) = H H Roions

d
=1 j=d+1

i

where Ry, n; =Ry, 0, ifni>n; and (n1,n2,- - -, ny) is a reordering of the vector (1,2, --,N).

y
Note: X[”lul;”dJr]:N] = reshape (‘)2“’ H7:1 Ini7 H?]:dJrl I”i)‘
Comparison:

> TT-rank: Rank(x[lzd;d+1:N]) = Ry,

o> TR-rank: Rank (X[1.4:4+1:5]) < RaRw;

> FCTN-rank: Rank (X[1.g.041.3)) < [Ty [T gy Riy-

@ the FCTN-rank can bound the rank of all generalized tensor unfolding;
@ can capture more informations than TT-rank and TR-rank;
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FCTN Decomposition

A Discussion of the Storage Cost

CP Decomposition
O(NR\I)

TT/TR Decomposition
O(NR3I)

Tucker Decomposition
O(NIR; + RY)

FCTN Decomposition
O(NRY™'T)
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FCTN Decomposition

A Discussion of the Storage Cost

CP Decomposition TT/TR Decomposition
O(NR\I) J O(NR3I) )

Tucker Decomposition FCTN Decomposition
O(NIR; + RY) J O(NRY™'T) )

The storage cost of the FCTN decomposition seems to theoretical high. But when we
express real-world data, the required FCTN-rank is usually less than CP, TT, TR, and
Tucker-ranks.
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FCTN Decomposition

FCTN Composition

Definition 2 (FCTN Composition)

We call the process of generating X by its FCTN factors G, (k = 1,2,---N) as the
FCTN composition, which is also denoted as FCTN({G:};_,). If one of the fac-
tors G (t € {1,2,--- ,N}) does not participate in the composition, we denote it as
FCTN({G:}ilr, /Gr)

Theorem 3
Supposing that X = FCTN({Gi}i~,) and M, = FCTN({G:};_,, /G:), we obtain that

Xy = (Go) () M)y ymrna >

2i, ifi <t, 2i—1, ifi<t,
m; = and n; =

where

2i—1, ifi > 1, 2,  ifi>t.
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FCTN-TC Model and Solving Algorithm

Outline

Q FCTN-TC Model and Solving Algorithm
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FCTN-TC Model and Solving Algorithm

FCTN-TC Model

Incomplete Observation - Relationship N Underlying Tensor
Fe RIIXIZX“'XIN J PQ(X) — PQ(.F) J X e RI] X1 X X1y J
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FCTN-TC Model and Solving Algorithm

FCTN-TC Model

Incomplete Observation - Relationship N Underlying Tensor
Fe RIIXIZX“'X[N J PQ(X) — PQ(.F) J X e RI] X1 X X1y J

I

FCTN Decomposition-Based TC (FCTN-TC) Model
1
min 5 [|X ~ECTN(Gy, G, -+, Gu) 7 + 15 (X), @)
where G = (G1,Ga,- -+, Gn),
oo, otherwise,

0, ifxes,
ts(X) = with S:= {X: Po(X — F)=0},

Q is the index of the known elements, and Pq (X)) is a projection operator which projects
the elements in 2 to themselves and all others to zeros.

4

Yu-Bang Zheng (UESTC) FCTN Decomposition 19/29



FCTN-TC Model and Solving Algorithm

PAM-Based Algorithm
Proximal Alternating Minimization (PAM)

GV =argmin {617, Gi G X) + 516~ GO} k=120,
k

©)
20 argmin {5(@, 2) 4 80— a0,
where f(G, X) is the objective function of (2) and p > 0 is a proximal parameter.
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FCTN-TC Model and Solving Algorithm

PAM-Based Algorithm

Proximal Alternating Minimization (PAM)

GV =argmin {60,661 X) + 516k~ G}, k=12 N
k

(©)
41 . s+ 1 2
20 —argmin {£(g¢, ) + Zx — 2O},
X
where f(G, X) is the objective function of (2) and p > 0 is a proximal parameter.
Gi-Subproblems (k=1,2,---,N)
(GIESJrl))(k) [X(S; (Mk My, N—13M]:N—1] +p(G(S))(k)} [(MIES>)[/71|:N—| ?”]:N—]](MIEA))["I:Nfl impN—1] +p1] - @
G = Genro1a((GC )y ki1, -+ k= Lk 41, ,N),
where M]E:) =FCTN(G (:;rll)’ Gk ng e /Gx). and vectors m and n have the same setting as that in Theorem 3.
y
X-Subproblem
(s+1)N (s)
FCTN({G —1) + pX
26D _ PQC( ({97 ) +r ) + Po(F). 5)
I+p
y
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FCTN-TC Model and Solving Algorithm

PAM-Based Algorithm

Algorithm 1 PAM-Based Solver for the FCTN-TC Model.
Input: F € RixLx-XIv O the maximal FCTN-rank R™* and p = 0.1.
Initialization: s = 0, s™ = 1000, X = F, the initial FCTN-rank R = max{ones(N(N —

1)/2, 1),Rmax—5}, and g]EO) :rand(Rlyk,Rz’k, . ':kal,kylkka,lH»lv' . '7Rk,N)a where k= 1,2,~ . ',N.
while not converged and s < s™# do

Update G\ via (4).
Update X6+ via (5).

Let R = min{R + 1,R™*} and expand gff’*” if |XGHD — XO) || /| XO || < 1072,
Check the convergence condition: [|X G+ — X&) ||z/]|x® || < 1075,

Lets=s+1.
end while

Output: The reconstructed tensor X.

Theorem 4 (Convergence)

The sequence {G ), 2 }sen obtained by the Algorithm 1 globally converges to a criti-
cal point of (2).
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Numerical Experiments
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Numerical Experiments

Synthetic Data Experiments

@ Compared Methods: TT-TC (PAM), TR-TC (PAM), and FCTN-TC (PAM);

@ Quantitative Metric: the re
and the ground truth.

lative error (RSE) between the reconstructed tensor

(Original) (Transpositional)
TT-TC (PAM)

(Original) (Transpositional) (Original) (Transpositional)
TR-TC (PAM) FCTN-TC (PAM)

«102  Fourth-order tensor

4 %107 Fifth-order tensor

RSE
woWw A L o

80% 60%
MR

RSE
38

—_

40% 80% 60% 40%
MR

Figure 2: Reconstructed results on the synthetic dataset.
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Numerical Experiments

Real Data Experiments

Compared Methods: Quantitative Metric:
@ HalLRTC [Liu et al. 2013; IEEE TPAMI]; @ PSNR;
@ TMac [Xu et al. 2015; IPI]; @ RSE.

@ t-SVD [Zhang and Aeron 2017, IEEE TSP];
@ TMacTT [Bengua et al. 2017, IEEE TIP];

@ TRLRF [Yuan et al. 2019; AAAI.
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Numerical Experiments

Color Video Data

Table 1: The PSNR values and the running times of all utilized methods on the color video data.

Dataset | MR | 95% 90% 80% Mo |l Dataset| MR | 95% 90% 80% Mean
time (s) time (s)

Observed |8.7149 8.9503 9.4607 — Observed|4.5969 4.8315 5.3421 —
HaLRTC |14.490 18.507 22.460 36.738 HalLRTC |18.617 21.556 25.191 34.528
TMac |25.092 27.035 29.778 911.14 TMac |[26.941 26.142 32.533 1224.4
news t-SVD |25.070 28.130 31.402 74.807 || containe| t-SVD |28.814 34.912 39.722 71.510
TMacTT |24.699 27.492 31.546 465.75 TMacTT |28.139 31.282 37.088 450.70
TRLRF |22.558 27.823 31.447 891.96 TRLRF |30.631 32.512 38.324 640.41
FCTN-TC |26.392 29.523 33.048 473.50 FCTN-TC |30.805 37.326 42.974 412.72
Dataset | MR | 95% 90% 80% M°¥ |l pataset| MR | 95% 90% 80% Mean
time (s) time (s)

Observed |3.8499 4.0847 4.5946 — Observed|6.4291 6.6638 7.1736 —
HaLRTC |16.651 20.334 24.813 38.541 HalLRTC |14.561 19.128 23.396 32.882
TMac |26.753 28.648 31.010 500.70 TMac |25.464 28.169 30.525 779.78
elephants| t-SVD [21.810 27.252 30.975 63.994 || bunny t-SVD |21.552 26.094 30.344 66.294
TMacTT |25.918 28.880 32.232 204.64 TMacTT |26.252 29.512 33.096 264.15
TRLRF |27.120 28.361 32.133 592.13 TRLRF |27.749 29.034 33.224 652.03
FCTN-TC|27.780 30.835 34.391 455.71 FCTN-TC|28.337 32.230 36.135 468.25

The data is available at http./trace.eas.asu.edu/yuv/.
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merical Experiments

Color Video Data

Observed HalLRTC

FCTN-TC 7 Ground truth

0 0.1 02 03 04 05 06 0.7 08 09 1

Figure 3: Reconstructed results on the 35th frame of the CV bunny.
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cal Experiments

Traffic Data

Observed HalLRTC TMac t-SVD

1357 91113151719 1857 91n13151710 0135701131511 135 7 91113151719
RSE=0.6370 RSE=0.0989 RSE=0.0669 RSE=0.1016

TMacTT TRLRF FCTN-TC Ground truth

135 7 9 11131517 19 135 7 91113151719 7135 7 911131517 19

13 5 7 91113151719
RSE=0.0613 RSE=0.0766 RSE=0.0553 —
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 4: Reconstructed results on the traffic flow dataset with MR=40%. The first and the second
rows are the results on the 2nd day and the corresponding residual results, respectively.
The data is available at http:/gtl.inrialpes.fr/.
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Conclusion

Conclusion

Contributions

@ Propose an FCTN decomposition, which breaks through the limitations of TT and
TR decompositions;

@ Employ the FCTN decomposition to the TC problem and develop an efficient PAM-
based algorithm to solve it;

© Theoretically demonstrate the convergence of the developed algorithm.
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Conclusion

Conclusion

Contributions

@ Propose an FCTN decomposition, which breaks through the limitations of TT and
TR decompositions;

@ Employ the FCTN decomposition to the TC problem and develop an efficient PAM-
based algorithm to solve it;

© Theoretically demonstrate the convergence of the developed algorithm.

Challenges and Future Directions

@ Difficulty in finding the optimal FCTN-ranks < Exploit prior knowledge of factors;

@ Storage cost seems to theoretical high < Introduce probability graphical model. )
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Conclusion

Thank you very much for listening!

Homepage: https://yubangzheng.github.io
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