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1 Proofs of Theorems

Since Theorem 1 can be easily obtained by Definitions 1, 2, and 3, we only prove Theorems 2, 3, 4, and 5.

Theorem 2 (Transpositional Invariance) Supposing that an Nth-order tensor X has the following FCTN decomposi-
tion: X = FCTN(gl, Ga, -+ ,GN). Then, its vector n-based generalized tensor transposition X™ can be expressed as
xn FCTN( O ﬁnN), where n = (nq,na,- -+, ny) is a reordering of the vector (1,2,--- | N).
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That is X? = FCTN(Q{‘ g_g‘, .. gklfl, gkz,gklﬂ, . ,g_»,’;‘rl, §21,§22+1, cee ,g?,) According to the idea of recur-
sion, we can obtain X® = FCTN( o ,‘l‘z, e gn N) since the vector n can be obtained by continually exchanging the

elements of (1,2,--- , N). |



Theorem 3 Supposing that an Nth-order tensor X can be represented by Equation (1), the following inequality holds:

N
Rank(X[nlzd;ndJrl:N]) < H R"Li»nj’
i=1j=d+1
where Ry, n, = Ry, n, if ni > nj and (ny,na,---,ny) is a reordering of the vector (1,2,--- , N).

Proof. Supposing that G, € RIFftkx Rz kXX Ri—1 o X DX Ry XX By (] = 1,2 ... N) are the FCTN factors
of the tensor X, i.e., X = FCTN(G1,Ga,---,Gn). We define the tensor A4 as the composition of the FCTN factors
G; (i =1,2,---,d) and the tensor B as the composition of the FCTN factors G; (j = d+1,d+2,--- ,N). According to
the definition of tensor contraction, the tensor A is of size I1 X R g4+1 X Ri g12 X -+ X Ri n X I2 X Ro 441 X Ra g42 X
X Ry n X x Ig X Rggy1 X Rgdye X -+ X Rgq n and the tensor B is of size Ry g11 X R2 d41 X -+ X Rgd41 X
Id+1 X Rl)d_;,_g X Rg)d_;,_g X+ X Rd)d_;,_g X Id+2 X oo X Rl,N X R27N X X Rd,N X IN, satisfying

X =AxTu B

ni:

with
m; =1+ (¢ —1), if (¢—1)d+1<i<gqd,

ni=q+1+(i—[(g—1)d+1))(N—d+1), if (¢—1)d+1<i<qd,
where g =1,2,--- N —dandl = d(N — d). According to Theorem 1, we have
X[l:d;d+1:N] = A[n£;d§n1:l]B[ml:l§ml1;N,d]’

with
m;, =i+ id, i=1,2,--- ,N —d,

n, =i+ (i —1)(N —d), i=1,2,---,d,
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Therefore, we obtain
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Theorem 4 Supposing that Gy fork = 1,2, --- | N are the FCTN factors of an Nth-order tensor, X = FCTN({gk},]CV:l),
and My = FCTN({Gr}1_1, /Gt), we can obtain that

X(t) = (Gt>(t) (Mt)[mlzN_l;nlzN_l]a
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where

m;

% — 1, ifi > t, 2%, ifi>t.
Proof. According to the definition of tensor contraction, the tensor M; = FCTN({Gi}1_,, /G;) is of size I; x Ry 4 x
IQ X R27t X X It—l X Rt—l,t X Rt,t+1 X It+1 X X RtvN X IN, satisfying

XP = gt X M:N -1 Mt;
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withq = (1,2,---,t —1,t+ 1,t+2,--- ,N)andp = (¢t,1,2,--- ,t — 1,t+ 1,t +2,--- , N). According to Theorem
1, we have
Xty = (Ge) ) (M)

[m1:Nn-1;m1:N-1]"

O

Theorem 5 (Convergence) The sequence {G (), x(s) }sen obtained by the Algorithm 1 globally converges to a critical
point of the problem (2).

Proof. To prove the Theorem 5, we only need to justify that the following four conditions hold [1]:
1) G and X (s € N) are bounded;

2) f(G, X) is a proper lower semi-continuous function;

3) (G, X) satisfies the K-E property at {G(*), X (5}

4) {G®), X(*)} ¢y satisfies Lemmas 1 and 2.

Lemma 1 (Sufficient Decrease) Letting {G (=), x() }sen be the sequence obtained by the Algorithm 1, then it satisfies
s+1 s 1Y s+1 s s+1 s s
1G5 G X + 51670 =675 < FGRD. Gon A, k=12, N
F(GEHD, x(+D) 4 g||X(s+1) —XO|2 < F(GEHY, ),
Lemma 2 (Relative Error) Letting {Q(S), X (s)}seN be the sequence obtained by the Algorithm 1, then there exists
.AECSH) € 0 and ACHY € Ox15(X ) satisfied
AT + Vo, hGE G Xl < pIGETY = G s b =1,2,--+ L N;
HA(S—H + th(g S+1),X(S+1 )HF < PHX(S+1) _ X(S)”F,
where h(G, X) = 3||X — FCTN({Gr 1224 I3~

First, as shown in the Algorithm 1, the initial G ,(CO) (k=1,2,--- ,N)and X (©) are apparently bounded. Therefore, we

only need to justify that g,(j“) and X1 are bounded when Q',(gs) and X are bounded. Supposing that ||g,(j> lr <c
and |X®)||r < d, and according to (5), we have

1GE Ve < (X R IMS e + 267 12) QY + pI) Y|

< (@ 0[S (1 + o)
< (deV 71+ pe)/G/ p,

where Q§S) = <M§S))[m1:N71;n1:N71](M(18))[n1:N71;m1:N—1] ande; >0 (i =1,2,--,j = Hijt\;2 Ry t) are the eigen-

values of Qgs). Thus, fsﬂ) is bounded. Similarly, we can obtain that gésﬂ Q(S—H , -+, and QJ(\?H) are bounded.

Supposing that ||g,(j+” |7

< e and according to (6), we have
XD g < (€N + pd) /(1 + p) + || F | p-

Therefore, X (s+1) is bounded and the condition 1) holds.

Second, f(G, X) is the sum of a Frobenius-norm-based function 4(G, X’) and an indicator function ¢g(X). It is not hard
to see that h(G, X) is a C'* function whose gradient is Lipschitz continuous and ¢5(X’) is a proper lower semi-continuous
function. Therefore, the condition 2) holds.

Third, since the semi-algebraic real-valued function satisfies the K-L property [2], we only need to illustrate that
f(G, X) is a semi-algebraic function. It is easily obtained since the sum of two semi-algebraic functions is still a semi-
algebraic function, and h(G, X) and (s(X’) are the semi-algebraic functions. Therefore, the condition 3) holds.

g}(€3+1)

Fourth, we first prove the Lemma 1. Since is the optimal solution of the Gy-subproblem, we have
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Similarly, since X'(**1) is the optimal solution of the X'-subproblem, we have
f(g(s+1)’X(s+1)) + g||X(s+1) _ X(S)H% < f(g(erl)’X(s)).
Then we prove the Lemma 2. For each subproblem, we have

0 € Vg, h(G5™) G, 6L s X)) + p(G — G,
0€ Vah(GET, X) + p(X — X)) + dr15(X).

Letting
s+1 s+1 s s s+1 s
ALY = =V, MG, G, X9) = 06T - 617 € 0,
AGHD — v p(GEHD) D)) — p( G+ — x(9)) € gpig (X)),
which are evidently satisfied the conditions in the Lemma 2. Therefore, the condition 4) holds. O

2 Numerical Experiments for the Storage Cost

We test the storage cost of the Tucker decomposition and the proposed FCTN decomposition on a real hyperspectral
video!' (HSV) of size 60 x 60 x 20 x 20 (spatial heightx spatial widthxbandxframe) [3]. All methods are solved by
PAM to get rid of the influence of the algorithm. When the error bound is 10~2, we find that Tucker decomposition needs
384652 (26.71% of total elements) parameters (Tucker rank is (38, 39, 16, 16)) to express the testing data, while FCTN
decomposition only needs 20000 (1.39% of total elements) parameters (FCTN rank is (5,5,5,5,5,5)). Here, the Tucker
rank is set as different values to obtain the minimum parameters, and the FCTN rank is set as the same value for reducing
hyper-parameters in our method. This testing result provides empirical evidence for the analysis (Section 3.2 in the main
body) regarding the superiorities of the FCTN decomposition over the Tucker decomposition for the storage cost.
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IThe data is available at: http://openremotesensing.net/kb/data/.



